iconNotes in Public

Sviluppi di Taylor centrati in 0

Dec 28, 20231 min read


​−  ex=k=0∑n​k!xk​=1+x+2x2​+6x3​+⋯+n!xn​+o(xn)−  sin(x)=k=0∑n​(2k+1)!(−1)k⋅x2k+1​+o(x2n+1)=x−6x3​+120x5​+⋯+(2n+1)!(−1)n⋅x2n+1​+o(x2n+1)−  cos(x)=k=0∑n​(2k)!(−1)k⋅x2k​+o(x2n)=1−2x2​+24x4​+⋯+(2n)!(−1)n⋅x2n​+o(x2n)−  1−x1​=k=0∑n​xk+o(xn)=1+x+x2+x3+⋅+xn+o(xn)−  log(1+x)=k=0∑n​(2k+1)!(−1)k⋅x2k+1​+o(x2n+1)=x−6x3​+120x5​+⋯+(2n+1)!(−1)n⋅x2n+1​+o(x2n+1)​


Graph View

Backlinks

  • Calcolo Differenziale (class)
  • Derivata di una Serie di Potenze
  • Serie di Taylor

Created with Quartz v4.5.1 © 2025, Icon Designed by Freepik.

  • GitHub
  • Source Code
  • Report Error